schedule: weight
weight 计算公式
Linux weight 和 nice 有一个对应关系, 具体的公式为:
1
2
x为nice
y为weight
在kernel 代码中静态保存这个关系的数组:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*
* Nice levels are multiplicative, with a gentle 10% change for every
* nice level changed. I.e. when a CPU-bound task goes from nice 0 to
* nice 1, it will get ~10% less CPU time than another CPU-bound task
* that remained on nice 0.
*
* The "10% effect" is relative and cumulative: from _any_ nice level,
* if you go up 1 level, it's -10% CPU usage, if you go down 1 level
* it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
* If a task goes up by ~10% and another task goes down by ~10% then
* the relative distance between them is ~25%.)
*/
const int sched_prio_to_weight[40] = {
/* -20 */ 88761, 71755, 56483, 46273, 36291,
/* -15 */ 29154, 23254, 18705, 14949, 11916,
/* -10 */ 9548, 7620, 6100, 4904, 3906,
/* -5 */ 3121, 2501, 1991, 1586, 1277,
/* 0 */ 1024, 820, 655, 526, 423,
/* 5 */ 335, 272, 215, 172, 137,
/* 10 */ 110, 87, 70, 56, 45,
/* 15 */ 36, 29, 23, 18, 15,
};
注释中提到, nice每增长1,cpu usage 减少 -10%. 每减少1,cpu usage增加 10%,然后一个增长10%一个增加10%,之间的距离大概是25%。有点抽象。我们 通过下面方式证明下:
对公式求导
求导过程如下:
\[\begin{align} \frac{d}{dx}[lg{y}] &= \frac{d}{dy}[lg{y}] * \frac{dy}{dx} \\ & = \frac{d}{dy}[\frac{ln{y}}{ln{10}}] * \frac{dy}{dx} \\ &= \frac{1}{y ln{10}} * \frac{dy}{dx} \\ &= \frac{1}{y * ln{10}} * (-y * ln{1.25}) \\ &= - \frac{ln{1.25}}{ln{10}} \\ &\approx -0.096 \\ &\approx -0.1 \\ \end{align}\] This post is licensed under CC BY 4.0 by the author.